
exascaleproject.org

ECP Software and
Preparing for Heterogeneity

Michael Heroux, ECP Director of Software Technology
Sandia National Laboratories

2

ECP ST Overview

3

Provide the next generation of
DOE software capabilities
targeted toward exascale
applications and platforms.
Provide these capabilities for the
specific exascale systems as
a high quality, sustainable
product suite.

Scope

Capabilities across the entire
HPC software stack that
complement and coordinate
with facilities, vendors and
other software providers to
enable effective execution of
ECP apps, and deliver a
capable, sustainable exascale
ecosystem.

Deliver a software stack that enables sustainable exascale capabilities

Mission
need Objective

4

Hardware and Integration
2.4

Project Management
2.1

Project Planning
and Management

2.1.1

Project Controls and Risk
Management

2.1.2

Information Technology
and Quality Management

2.1.5

Business Management
2.1.3

Procurement Management
2.1.4

Communications
and Outreach

2.1.6

Chemistry and Materials
Applications

2.2.1

Energy Applications
2.2.2

National Security
Applications

2.2.5

Earth and Space Science
Applications

2.2.3

Application Development
2.2

Software Technology
2.3

Programming Models
and Runtimes

2.3.1

Development Tools
2.3.2

Software Ecosystem
and Delivery

2.3.5

Mathematical Libraries
2.3.3

Data and Visualization
2.3.4

Data Analytics and
Optimization Applications

2.2.4

Co-Design
2.2.6

PathForward
2.4.1

Hardware Evaluation
2.4.2

Facility Resource
Utilization

2.4.5

Application Integration
at Facilities

2.4.3

Software Deployment
at Facilities

2.4.4

Training and Productivity
2.4.6

Exascale Computing Project
2.0

5

ECP Software Technology Leadership Team

Rajeev Thakur, Programming Models and Runtimes (2.3.1)
Rajeev is a senior computer scientist at ANL and most recently led the ECP Software Technology focus area. His research interests are in parallel

programming models, runtime systems, communication libraries, and scalable parallel I/O. He has been involved in the development of open source

software for large-scale HPC systems for over 20 years.

Jeff Vetter, Development Tools (2.3.2)
Jeff is a computer scientist at ORNL, where he leads the Future Technologies Group. He has been involved in research and development of

architectures and software for emerging technologies, such as heterogeneous computing and nonvolatile memory, for HPC for over 15 years.

Lois Curfman McInnes, Math Libraries (2.3.3)
Lois is a senior computational scientist in the Mathematics and Computer Science Division of ANL. She has over 20 years of experience in high-

performance numerical software, including development of PETSc and leadership of multi-institutional work toward sustainable scientific software

ecosystems.

Jim Ahrens, Data and Visualization (2.3.4)
Jim is a senior research scientist at the Los Alamos National Laboratory (LANL) and an expert in data science at scale. He started and actively

contributes to many open-source data science packages including ParaView and Cinema.

Rob Neely, Software Ecosystem and Delivery (2.3.5)
Rob has several leadership roles at LLNL spanning applications, CS research, platforms, and vendor interactions. He is an

Associate Division Leader in the Center for Applied Scientific Computing (CASC), chair of the Weapons Simulation and

Computing Research Council, and the lead for the Sierra Center of Excellence.

Mike Heroux, Software Technology Director
Mike has been involved in scientific software R&D for 30 years. His first 10 were at Cray in the LIBSCI and scalable apps groups. At Sandia he

started the Trilinos and Mantevo projects, is author of the HPCG benchmark for TOP500, and leads productivity and sustainability efforts for DOE.

Jonathan Carter, Software Technology Deputy Director
Jonathan has been involved in the support and development of HPC applications for chemistry, the procurement of HPC systems, and the evaluation

of novel computing hardware for over 25 years. He currently a senior manager in Computing Sciences at Berkeley Lab.

6

ECP ST SW Stack Version 1

Correctness Visualization Data Analysis

Applications Co-Design

Programming Models,
Development Environment, and

Runtimes

System Software, Resource
Management Threading,
Scheduling, Monitoring,

and Control

ToolsMath and Scientific
Libraries/Frameworks

Memory and
Burst buffer

Data Management,
I/O and File System

Node OS, low-level runtimes

R
es

ili
en

ce

W
or

kf
lo

w
s

Hardware interface

7

ECP ST SW Stack Version 2

Applications Co-Design

Software Ecosystem & Delivery

Development
Tools

Data & Visualization

Hardware interface

Programming
Models

Runtimes
Mathematical

Libraries
Embedded Data &

Visualization

8

Goal
Build a comprehensive,
coherent software stack
that enables application
developers to
productively write highly
parallel applications that
effectively target diverse
exascale architectures

ECP software: Productive, sustainable ecosystem

Extend current technologies to exascale where possible

Perform R&D required for new approaches when necessary

Coordinate with and complement vendor efforts

Develop and deploy high-quality and robust software products

56 WBS L4 subprojects executing RD&D
195 L4 subproject (P6) milestones delivered in FY17
426 L4 subproject (P6) milestones planned in FY18-19

9

Challenges
Qualitative changes:
Massive concurrency;
Multi-scale, multi-
physics, data-driven
science; Ecosystem
integration

ECP software: Challenges

Billion way concurrency: Several novel compute nodes.

Coupled apps: Physics, scales, in situ data, more.

Data-driven: New software HPC environments, containers.

Ecosystem: Part of a large, complex, evolving SW environment.

10

Overview of ECP ST Technical Areas

11

Key
themes

Programming Models
and Runtimes “+” in MPI+X:

Addressing
high on-node
concurrency

Portable
expression
of highly

concurrent
algorithms

New,
deployable

programming
models

Extension
of core

environments:
MPI, OpenMP

Promoting
standards: MPI,

OpenMP,
ISO/C++

12

Development
Tools

Key
themes

Code
generation and
programming
technologies

Scalability
analysis

tools

Performance
analysis

on new node
architectures

Rapid
adaptation

to new node
architectures

13

Key
themes

Performance
on new node
architectures

Extreme
strong

scalability

Advanced,
coupled

multiphysics,
multiscale

Optimization,
UQ, solvers,

discretizations

Interoperability,
complementarity:

xSDK

Math
Libraries

14

Key
themes

Hierarchical
storage
systems

Adaptation
to new node
architectures

Data
compression,

data
warehouses

In situ
visualization

Novel
visualization
approaches

Data and
Visualization

15

Key
themes

Hierarchical,
integrated

delivery of full
ST stack

Container-
based

workflows

New level
of collaboration

and
coordination

Software
Ecosystem
and Delivery

16

Some Recent Application Examples of the Issues.

17

Simultaneous heterogeneous execution

• HPCG on Trinity

• 9380 Haswell, 9984 KNL compute nodes.
– Haswell

• Processor dimensions: 27x42x17
• Local grid dimensions: 160x160x112

– KNL
• Processor dimensions: 27x42x34
• Local dimensions: 160x160x152

• HPCG result: 546 TF/s (3rd).
– Previous 180 TF/s for Haswell only.

• Key Point: For sparse codes, it’s about the memory system.

HPCG on SIERRA (Power9’s + 4 Voltas):
• About 10% of performance is from Power9’s
• Summit 6 GPUs: Power9’s less important.
• Both:

• Code complexity challenging.
• Runtime system complexity (MPI).
• Work partitioning.

18

• 4 4 8 8 B 68CC 8 8

– 5 1,2 6 B8

– CE B 5 EC8B 4 CIC 8 8C

– 5 86 B C BE6 C

– $ -) . 646 8 $ -) . 4 4 5 4I C8 4CC 6 4 8

– -) . 646 8 (4I C8 4CC 6 4 8

• E B 68CC 8 8

– ((8C

– 5 1,2 6 B8

– CE B I EC8B 8

– 5 86 B C BE6 C

– -) 26B4 6 4 8 B 4 8 8B

• 4 58 6 EB8 4C 8 6 64 8 B 23 4 4 8

– 46 4C -) B86 4 8 646 8

2-phase porting strategy: TaihuLight

Initial port:
• Vanilla MPI, 1 rank per MPE
• 23.2 GF/s /core
• 4 vector FMA
• 2 pipes
• 16 Flops/cycle FMA
• Peak: 2/65 of node peak

Subsequent optimization:
• Offload any work to CPEs
• 11.6 GF/s /core
• 4 vector FMA
• 1 pipe
• 8 Flops/cycle FMA

19

CAM-SE to TaihuLight: 2017 Gordon Bell Finalist

• CAM-SE: Spectral Element Atmospheric dynamical core
– Reported:

• 754,129 SLOC.
• 152,336 SLOC modified for TaihuLight (20%).
• 57,709 SLOC added (8%).
• 12+ team members.

– Challenges:
• Reusability of code seems low: Much of the optimization is specific to Sunway CPE processor.
• Translation effort difficult to accomplish while still delivery science results: Disruptive.

– Other notable example: Uintah (see Dec 2017 ASCAC talk)
• Separation of runtime concerns seems to really help, but app-specific.

20

Some Observations from these Efforts

• Even the simplest simultaneous heterogeneous execution is difficult.
– But maybe most apps won’t care: Sequential heterogeneous execution may be sufficient.
– But some probably will: Hard to support.

• MPI-backbone approach is very attractive.
– Initial app port to host backbone, hotspot optimization.
– Investment in portable programming expressions seems essential.
– Separation of functionality expression and work/data mapping seems essential.

21

ECP ST Programming Models, Runtimes, Tools for EH

22

ECP ST MPI Efforts

• The “+” in MPI+X:
– Two large MPI projects (MPICH and OpenMPI).
– Heavy focus on MPI+X interaction models.
– Heavy focus on runtime support:

• Overlapping comm/comp, ID and remove bottlenecks.
• High performance, correct execution.

• Support for the MPI backbone deployment model:
– Network of host processors + accelerator offload.
– Strong focus on OpenMP interaction.

23

Portable On-Node Programming
• OpenMP/OpenACC:

– New features, MPI interoperability.

– Standards Efforts.

• Kokkos, RAJA:

– Write-once, transformable source code.

– Compile-time polymorphic.

– Memory-space abstraction (Kokkos).

– Emphasis to evolve language standards.

• LLVM-based:

– Leverage community convergence on LLVM.

– OpenMP in LLVM

– Flang: LLVM-based Fortran Compiler.

• Qthreads: Light-weight threading API, runtime.

24

Portable On-Node Programming (2)

• Code tuning:
– ROSE-based code generation: Source to source, offline optimization.
– Autotuning.

• Tools (several):
– Insight for performance tuning.
– New approaches for gathering statistics from the system.

25

Inter-node Programming

• Projects:
– xGA – Next gen global arrays.
– Legion – Data-driven tasking with programmable mapping.
– ParSEC – lightweight tasking framework.
– UPC++ - C++ based partitioned global address space model.

• Leverage for EH:
– Experience, opportunities to abstract nodes.
– But not first order priority (IMO).

26

Libraries

27

Many Library Efforts: Math, I/O, Data, Viz

• Math Libraries: Preserving APIs, but substantial rewrites underneath.
• Embedded data/viz:

– In situ data analysis/compression: substantial algorithms change.
– Conceptual APIs.

• Checkpoint/Restart:
– Same API & execution model, very different implementation.
– Data offload to NVRAM.

• Reusable libraries and components can be a growing portion of our portability
strategy.

28

Software Ecosystem and Delivery

29

ECP Software Focus is Substantial, can impact EH

• Emphasis on quality software lifts all boats.
– Goal: Developer productivity, software sustainability.
– We are becoming better scientific software developers.

• Processes and practices for testing and integration.
– Social and technology pathways for accelerating research to production delivery.
– One major legacy of ECP.

• Software distribution channels:
– OpenHPC (or similar) software package distribution.
– Containers – Lower barrier to software access, in line with broader SW community.

30

What is Challenging for ECP to Support toward EH

• Timeline (further reduced from 10 to 7 years) leave some efforts out of scope.

• Hard to support R&D with no significant product delivery in 2021-2022 time frame.

• ECP apps and software are focused on Exascale systems (obvious).

• Off limits: Post-Exascale requirements that are not well aligned with Exascale.

• Opportunity:
– Align Exascale and post-Exascale requirement to maximize leverage.

– Open to ideas that make alignment better.

31

ECP for EH: Summary

• ECP efforts for “+” in MPI+X should aid EH significantly.

• ECP efforts for portable, efficient application development (especially on-node)
should lead to apps that are easier to port to any new architectures.

• Greater emphasis on reusable, compatible software libraries and components
will improve effective encapsulation of some heterogeneity.

• Providing incentives and opportunities to do a better job of scientific software
development should make our community more effective and efficient.

• Help us optimize ECP alignment with post-Exascale requirements.

